

SERVER CONSOLIDATION

Perceived Performance
and

Virtual Operating Systems

Timothy Mangan
TMurgent Technologies
April 1, 2005

Table of Contents

Abstract ... 3
Introduction... 3
Server Consolidation Projects... 4
Virtual machine Architecture.. 5
Virtual Machine Performance Testing.. 8

The Perceived Performance Profile on a Native Server ... 9
Simple Virtual Machine Performance on a Lightly Loaded System 10
Virtual Machine Performance with Resource Management ... 12

Resource Management in the Virtual Guest OS ... 12
Resource Management in the Host OS ... 13
Resource Management in the Both OSs ... 15

Enabling limits on Virtual Machine Instances.. 16
50% Static Constraint on an Unmodified Virtual Machine 17
50% Static Constraint with Resource Management tools... 18

Performance of Multiple Guest OSs with Heavy Loads... 19
Dynamic Contention without Resource Management Software............................... 19
Dynamic Contention with Resource Management Software.................................... 21

Additional Alternatives... 22
Conclusions... 24
References... 25

Abstract
Many businesses are using, or evaluating, virtual Operating Systems in their server
centers. Whether used for server consolidation, redundancy, or flexibility, the benefits
are too great to ignore. And yet little is known about the performance aspects of these
virtual environments.

The majority of consolidation projects today are focusing on replacing a number of
existing underutilized systems with a more modern server using virtualization. The
“conventional wisdom” in the field is to keep the number of virtual machines per server
low and incorporate only servers that have low resource utilization.

This paper looks at the two leading “virtual machine1” architectures, from Microsoft and
VMware. In the paper, tests are described and results published that provide insight into
how these systems perform under scale.

Experience in the related field of Terminal Servers provides guidance in steps that can be
taken that will allow an enterprise to use more resource intense virtual machines in their
deployments. Tests results are also included in this paper that make use of existing 3rd
party tools that are worthy of consideration in virtual environments.

Introduction
Virtual machines are typically considered for one or more of three reasons; server
consolidation, redundancy (ease of hardware system replacement), and flexibility (the
ability to roll out new servers when demand warrants).

In a virtual machine deployment, software is added to a host server that allows it to run
one or more complete guest operating systems on top of the host operating system. These
guest operating systems act as complete systems (either desktops or servers) that run
abstracted from the underlying hardware.

When used for server consolidation, the benefits include cost savings in staffing,
hardware, software, and facilities (space, and/or power)[1]. With the reduced budgets
that most enterprises have been living with since 2001, many are continuing to maintain
servers beyond their life expectancy. These servers are running on outdated hardware
that is expensive to maintain and for which replacement parts are more scarce or
impossible to find. An example might be a 666mhz uni-processor server. The typical
server consolidation project consists of taking a handful of these systems and deploying
them on a more modern multiprocessor server. By using virtual operating systems, the
server software can be moved in entirety and run without risk of integration with software
from other servers.

1 In this paper the term “virtual machine” is used, without capitalization, as a generic term. References to
the Microsoft product Virtual Server are appropriately capitalized.

Virtual machine technology is also used for the purpose of redundancy. While backup
strategies, including complete server imaging (such as Norton Ghost and others) can be
effectively used when well understood, these solutions require identical hardware on the
new server. By using virtual machines, the backup image of the guest OS is a simple file
to be backed up and restored on any hardware platform thanks to the hardware
abstraction. Features such as VMotion (from VMware) extend automation of this
redundancy concept.

Virtual machine deployments also allow for flexibility needed by some companies.
Perhaps an enterprise needs more web servers at the end of the year and more
productivity servers during the rest of the year.

And it is impossible to talk about virtual machine deployments without mentioning the
trend toward deploying the hardware as blades as well. The combination of using blades
and virtual machines has become very popular, especially with server consolidation.

The leading providers of server virtualization software today are VMware2 and
Microsoft. VMware is the industry leader, with Microsoft playing catch-up by buying a
company with a competing product3 and “beefing it up”.

VMware offers two versions, GSX and ESX. The ESX product is more robust, however
requires its own operating system for the host (their own brew of a Linux kernel),
whereas the GSX product will run on either Microsoft or Linux commercial offerings.

Microsoft offers two versions as well, called Virtual PC and Virtual Server. As the
names imply, the former is for use on desktop PCs and the latter for servers. Although
results of testing are not shown in this paper, tests performed in the lab indicate that
either Microsoft product can run virtualized servers with equivalent performance. The
main difference between the two Microsoft versions come is in the console interface.
The Virtual PC console is rudimentary.

Server Consolidation Projects
Currently, the “conventional wisdom” on consolidation projects is to focus on migrating
existing, vastly underutilized, systems. Typical of these are file or web servers that are
now running on single CPU systems with clock rates under 1ghz. Usually, candidates for
consolidation are using less than 20% of the CPU even on these outdated systems. In the
time since these systems were deployed, server performance has grown significantly. To
illustrate, typical TPC-C benchmarks (which standardize a method to measure the
number of transactions-per-minute) were in the 10,000 TPM rage in 1996. Current TPC
measurements are in the hundreds of thousands range for typical servers, and over a
million for the high end[3]. Consolidation rates for these kinds of underutilized servers

2 VMware was acquired by EMC Corporation in 2004. As of this publishing it continues to operate as a
separate subsidiary under its own name.
3 Microsoft Corporation acquired this software from Connectix in 2003.

of up to 3-4 virtual machines per CPU (in the new server) are reported. Given the
improvements in computing performance over the time span, more should be possible.

It is reasonable to expect that with success on these early projects, businesses will more
aggressively approach server consolidation; incorporating more resource intensive
servers if they can prove that they can maintain the same level of responsiveness and
stability in their test labs and pilot rollouts.

These more aggressive deployments will face some of the same resource contention
issues that are faced today in larger Terminal Server deployments. Many of the proven
solutions to resource issues in the Terminal Server field should prove useful in these
virtual machine deployments as well.

Virtual machine Architecture
A virtual machine deployment consists of software that is placed on a server with a host
operating system which allows multiple, independent, and complete, operating systems
(virtual machines) to run on the same hardware at the same time. Each virtual machine
thinks it is running on dedicated hardware and is unaware that the hardware it thinks it
sees is an abstraction, nor is it aware of the host OS, or other virtual machines co-
resident. By tradition, the software providing this abstraction is called a “virtual machine
monitor”4, although this paper will use a more appropriate term “virtual abstraction
layer” (as far more than monitoring is involved).

The virtual abstraction layer supplies an interface at the bios level. It presents the virtual
(guest) OS with virtual hardware that looks like a minimal and common hardware
system. The virtual hardware would have a single CPU, standard hard disk(s), mouse,
keyboard, com ports, and a NIC. The virtual hardware presented was selected by the
vendors because it is easily recognized and supported by all the major operating systems
that might be used in the virtual machine, and due to efficiency. It is reported, for
example, that in some cases using a virtual SCSI disk in the guest OS improves
performance over a virtual IDE disk – even when the underlying physical disk is IDE.

A goal of these virtual machine architectures is to minimize “instruction emulation” to
reduce overhead. Most instructions carried out within the virtual machine guest OS are
directly executed on the underlying hardware, even if intercepted by an additional virtual
bios layer. The remaining instructions are executed by the virtual abstraction layer
(primarily hardware operations that require synchronization with other virtual machines
needs), or emulated on real hardware when required. An excellent description of this
process and other historical techniques at virtualization is given in reference [1]. It is for
these reasons that one cannot run a virtual 64-bit operating system on a 32-bit processor.

4 This stems from the IBM use of the term, and is still in use in architectures such as Xen.

The virtual machine architectures of both VMware5 and Microsoft Virtual Server are
summarized in Figure 1 below.

Figure 1 - Architecture of a virtual machine

This form of virtualization is referred to as full-virtualization. Each virtual machine is
implemented as a separate thread of the virtual abstraction layer software process on the
host operating system. Because any given thread in the host OS can only run in one
processor at a time, the Guest OS is presented with a virtual machine that looks like a
single processor system. The host hardware may (and usually is) a SMP (symmetric
multi-processor) system. Much as any given thread might run in different processors at
different times, this virtual machine thread may run in different physical processors on
the host hardware at different times also. There is no need to peg certain virtual
machines to certain processors (called setting processor affinity), and it is possible (even
reasonable) to have more virtual machines than processors. In addition, no more concern
need be given to hardware technologies, such as HyperThreading, than would be given
any other application on the host OS.

In practice, the testing performed for this paper indicates that the ratio of virtual machines
to processors is dependent only on the sum of the resource requirements (primarily CPU
and memory) of the virtual machines.

5 This diagram is appropriate for the GSX server. The diagram normally depicted for VMware ESX server
usually leaves out the host OS. This is no more than a marketing pitch, as a specialized version of a Linux
kernel is used in the ESX solution. This paper contends that the diagram in Figure 1 is appropriate for the
GSX as well.

Virtual Machine A Virtual Machine B Virtual Machine C

Guest OS Guest OS Guest OS

Guest OS
Services and
Applications

Guest OS
Services and
Applications

Guest OS
Services and
Applications

virtualized hardware

Host OS
Services and
Applications
on Host OS

virtual abstraction layer software

Host Operating System

Host Hardware

Final notes regarding virtualization architecture:
• Full-virtualization is not the only option. See the section on Additional

Alternatives regarding para-virtualization.
• Two of major CPU manufacturers, Intel and AMD have each announced plans to

produce chip versions that would allow virtual machines to run at the hardware
level. It was the chip support by Intel that made virtual memory operating
systems efficient through the use of a special register – similar well thought out
support for virtual machines within the CPU might produce similar results. While
potentially very interesting, these plans are potential futures and it is not clear that
they will work without special support by the host operating system either; these
plans should not be cause for an enterprise to take a “wait and see” attitude
toward virtual machines. .

Virtual Machine Performance Testing

The term “Perceived Performance” was first described by Tim Mangan in his paper
“Perceived Performance” [3] in 2003. In that paper, Perceived Performance,
differentiated from Computational Performance, is described as “a methodology where
one analyzes the system with a goal of improving user productivity by focusing on issues
that affect the performance of the system as perceived by the users using it”.

One of the key new benchmarks used in analyzing server performance is the “Perceived
Performance Profile”. The technique of making measurements that describe the
performance of a system as viewed by a system user was It was in a 2004 follow-up
paper sponsored by triCerat and also called “Perceived Performance” [5], that a method
of visualizing the performance, called Perceived Performance Profile, was first explained.

In this paper the perceived performance profile will be used to demonstrate performance
test results. These tests serve to help us understand server performance of virtual
machines. Some notes about the test setups are in order:

• Test results in this paper were created from test data on a server that is typical of
those used for servers today. All the tests presented in this paper were performed
on hardware consisting of hardware that included dual 2.6Ghz Xeon processors
with HyperThreading enabled (essentially a quad processor system), 4GB of
RAM, and local SCSI disks6. The hardware was running Microsoft Windows
Server 2003 for the host operating system.

• To virtualize the guest operating systems, either Microsoft Virtual Server 1.1 EE

or VMware GSX 3.1.0 was used (as indicated on the graphs). In the figures that
follow in the paper, eight virtual machines (using a mixture of operating systems)
were running. Each virtual machine was configured with a minimal but sufficient
RAM so that paging inside the guest OS was minimized. For all but the last two
test cases shown, seven of the virtual machines were running but essentially idle.
The loading of the eighth virtual machine was varied and performance of that
virtual machine was measured. The eighth virtual machine, where performance
measurements were made, was a Windows 2000 server.

• Tests were conducted in a controlled lab at TMurgent Technologies. Domain,

Name, and licensing servers were all external but local resources. Where terminal
services were utilized, local profiles used.

• The CPU priority performance product used in some tests (where noted) was a

pre-release of Simplify Resources 4.0 from triCerat7.

6 Although SAN storage is proving more and more popular in server deployments, testing in this paper uses
local, non-RAID, storage for more consistent test results.
7 Funding to support this paper came from triCerat.

The Perceived Performance Profile on a Native Server
The Perceived Performance Profile (which will herein be referred to as ��) shows the
amount and variability of delay felt by a user to typical operations that they do. These
operations themselves take little CPU resources, but are affected by everything else going
on in the server at that time. In the case of virtual machines, the �� can be affected by
operations in any of the virtual machines or host server itself. Figure 3, shows the �� for
a typical server, such as would be used in a Web or Terminal Server deployment, without
any virtualization in use (see test notes in previous section).

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
Full3

0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User Load

P3 HostOS: Quad Processor Host System with Server 2003

None
Low
Medium
Busy
Full1
Full2
Full3
Full4
Overloaded

Figure 2 - P3 for typical server

Each colored row in the ���indicates the likelihood that the user will feel delays of a
given duration. For example, when user loading on the server is low, the user
experiences delay of under fifty ms nearly 100% of the time. As server loading is
increased, the user experiences increased delays averaging one-half to three-quarters of a
second. This graph provides visual support to the “common wisdom” that you keep your
servers running at no more than 50% of capacity (the salmon colored row).

Even more import than the average delay, according to this research [3], is the variability
that occurs in delay. Consistent visual response to user actions is the most important
factor to user productivity. This delay variability is clearly visible in the �� for the three
last rows of the graph, where delays can occasionally reach two seconds!

Simple Virtual Machine Performance on a Lightly Loaded
System
Of interest is to show the effect of moving users from a real server onto a virtualized
server. Figure 3 and Figure 4 present ��s for a virtual machine from each vendor. In the
Figure 3 case we used Microsoft Virtual Server to host the guest OS; in Figure 4
VMware’s GSX Server software was used to host the guest OS. In both cases, the CPU
load was placed inside a virtual guest operating system and p Performance measurements
were made against user sessions within the guest operating system.

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User
Load

P3 GuestOS: MicrosoftVS, 1Guest unmodified

None
Low
Medium
Busy
Maximum
Overload

Figure 3 - �������� for Single Virtual Machine (Microsoft Virtual Server)

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User
Load

P3 GuestOS: VMWare GSX unmodified; 1 Guest unmodified

None
Low
Medium
Busy
Maximum
Overload

Figure 4 - P3 for Single Virtual Machine (VMware GSX Server)

These ��s show what happens to system performance as load is added to the guest OS
server. The results are similar for each virtual machine host.

These results show that a user experiences similar average performance degradation to
that of non virtualized server. We do see a decrease in delay variability, however, that is
due to the remainder of the host system being under-utilized.

Because the virtual machine host limits the Guest OS to a single processor, the definition
of “busy” means that the guest OS is only using ¼ of the total CPU on our 4 processor
system. The implementations by both Microsoft and VMware GSX do not restrict the
guest to the same processor each time, but only a single processor can run on behalf of a
given virtual machine at a time8. Later in this paper results are presented showing
multiple guest OSs being loaded up with users.

8 In a VMware ESX server guest operating systems are given visibility to more than one processor.
Perceived Performance results on the ESX server will need to be the subject of a future paper.

Result
Guest OS performance degrades as
load on the virtual machine increases.
Degradation starts at a lower loading
level than a non virtual machine.

A better comparison might be to run these same two tests on a uni-processor system.
Funding limitations prevented setting up such a test for this paper, however, the
expectation is that under such a test, both the average and variability of delay would
increase, possibly significantly, in the guest operating system case.

Before presenting additional results, there are some other observations should be passed
along from the test experience. These observations are presented without backing data.

• Generally, virtual machines use about 5% CPU overhead.
• The Windows Task Manager, within the guest OS, is an unreliable indicator of

CPU usage. Pauses in the virtual machine (due to contention by host OS
processes or other virtual machines) are charged to whatever is running in the
virtual OS at the time of the pause as CPU cycles consumed. It was necessary to
develop other techniques to determine the actual CPU usage.

• Although some improvement is seen in delay variability for the GSX hosted OS
in Figure 4 versus the Microsoft case, this was found to be unique to the under-
loaded host server scenario that is not typical for what customers implement when
consolidating.

• There are some non-intuitive results observed which brings into question the
effectiveness of the “File Cache” of the Microsoft operating system. It may be
possible that the effect of “double buffering” the cache actually improves typical
operation. This has not been directly observed, nor has any test been proposed to
prove or disprove it. It is mentioned here for possible future research.

Virtual Machine Performance with Resource Management
It is common, especially with Terminal Servers, to improve system performance of the
native operating system by using add-on resource management products, such as
triCerat’s Simplify Resources.

But do these products work in the virtual machine? And where do you deploy them, in
the host OS or server. In the next set of tests, light is shed on what happens when you
add in these products, either within the guest OS or in the host OS.

Resource Management in the Virtual Guest OS
In Figure 5, we present the �� of the same test setup used for Figure 3, but with a
resource management product added into the guest OS of the eighth server.

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User
Load

P3 GuestOS: MicrosoftVS, 1 Guest w/Priority Management

None
Low
Medium
Busy
Maximum
Overload

Figure 5 - �������� Single Virtual Machine with CPU management in Virtual OS

These results show that introducing resource management product to the virtual operating
system improves the ����pretty much eliminating the impact of virtual machine load.
These results are mostly consistent with the results seen in the non-virtual environment.

Although test results are not included in the paper, it should be noted that the advantage
of adding resource management software to perform prioritization in a single guest OS
aids only the guest OS and not the host or other guest OSs9. For best results such
software would be deployed in each guest OS.

Resource Management in the Host OS
What happens when you add such resource management software to the host OS instead
of the virtual OS? It is important to note that documentation from both of the major
vendors caution strongly against using add-on resource management products on the host

9 Some Resource Management products support both CPU Prioritization and CPU Limiting. When CPU
limiting is used inside a guest OS, the benefits are felt by users of the host OS or other guest OSs sharing
the same hardware.

Result
Virtual server performance is
significantly improved with resource
management tools added to the virtual
OS.

OS. The concern here is that all CPU cycles used by virtual machines show up in the
host OS under different threads of the virtual abstraction layer process. If the resource
management product interferes with the virtual abstraction layer processes because of the
high level of resources consumed, virtual machine performance will degrade. In
addition, as we shall see later, the virtual abstraction layer itself performs load balancing
functions between virtual machines. At this time it is unwise for a third party product to
interfere with the virtual abstraction layer processes.

However, the host server consists of much more than just the virtual abstraction layer
processes. Even if no users ever log into the host OS, there are a variety of other
occasionally resource consuming processes on the server, possibly including a Web
Server (for virtual machine management), DNS, Licensing, Active Directory, licensing,
and file services. Properly configured, resource management software on the host OS
should improve the virtual machine performance.

The results of such a test are shown in Figure 6 below.

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User
Load

P3 GuestOS: MicrosoftVS Host w/Priority Management; 1 Guest unmodified

None
Low
Medium
Busy
Maximum
Overload

Figure 6 - Adding Resource Management to the Virtual OS

While the results show a slight improvement as the virtual machine load increases (about
100-200ms improvement in the overloaded case), the improvement is modest. The reader
is cautioned that this is on a lightly loaded system, and the amount of improvement will
rapidly increase as the overall server load increases. This is especially true if host OS
processes become active, such as a console logon or placing the Active Directory Server
on the host OS.

Resource Management in the Both OSs
In Figure 7, the results of adding resource management to both the host and virtual OS
are presented. As expected, this scenario presents the best results of an optimized
system.

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User
Load

P3 GuestOS: MicrosoftVS Host w/Priority Management; 1 Guest w/Priority Management

None
Low
Medium
Busy
Maximum
Overload

Figure 7 - Adding Resource Management to Host and Virtual OSes

Result
Virtual Server performance is slightly
improved with resource management
tools added to the host OS. The
amount of improvement increases with
overall system load.

Result
Virtual Server performance is best
optimized with resource management
tools added to the host and virtual
operating systems.

Enabling limits on Virtual Machine Instances
As mentioned earlier, the virtual machine can and does impose limitations on resource
consumption when faced with limits. These limits can occur because of actual contention
between virtual machines, or due to static constraints imposed by an administrator.

Under Microsoft Virtual Server, there is a configuration constraint in the form of a
maximum CPU utilization for each guest OS10. Figure 8 shows the setup of such a static
constraint on the server Win2kSimplify01. In the example that follows this virtual
machine to use no more than 50% of a single CPU.

Figure 8 - Using CPU Constraints on Microsoft Virtual Server

As a side note, our investigation showed that this 50% constraint is imposed on the
effective CPU utilization of the virtual machine. The effective utilization includes both
the CPU used by the virtual machine, plus the overhead imposed in virtualization. This is
typically about 5%. Thus a virtual machine that is using 20% of a CPU looks like 25%
for the purpose of the constraint11.

10 The VMware GSX server does not have a similar constraint feature. As the results show, this is a good
thing.
11 Note that the task manager within the guest OS reports nearly 100% CPU utilization in this situation.
These measurements are taken on the host OS.

50% Static Constraint on an Unmodified Virtual Machine
Performance tests within the constrained virtual guest OS were performed. Once again,
this test is run with other virtual machines effectively idle. The test allows illumination
on the effectiveness of the load balancing software within the virtual abstraction layer
itself. The results of this test are shown in Figure 9.

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User
Load

P3 GuestOS: MicrosoftVS w/50% Limit ; 1 Guest unmodified

None
Low
Medium
Busy
Maximum
Overload

Figure 9 - 50% Constraint Imposed

As the ���shows, the performance experienced by users of the virtual machine drops
considerably when load balancing occurs unless the virtual machine is very lightly
loaded. Notice that even under “Medium” loading of the virtual machine – in which
software is tuned to consume about half of the CPU available to the guest OS - the effect
is felt.

Analysis shows that the virtual abstraction layer, having little insight into what is
occurring within the virtual OS, is ill prepared to optimize using such a constraint. This
is the reason that “conventional wisdom” is to use only lightly loaded virtual
machines/servers and avoid these constraints. Being a static constraint, the example in
Figure 9 serves as a “worst case scenario” for the effect of dynamic constraints that occur
in loaded, multi guest OS situations.

 50% Static Constraint with Resource Management tools
In the test results shown in Figure 10, we see that adding resource management help
within the Virtual OS to the statically constrained system helps significantly.

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User
Load

P3 GuestOS: MicrosoftVS w/50% Limit ; 1 Guest w/Priority Management

None
Low
Medium
Busy
Maximum
Overload

Figure 10 – 50% Constraint with SR Resource Management

While not necessarily an ideal ��, the results make the system considerably more
palatable. It is considered that a one second delay is about the limit of user endurance for
occasional delays.

Of course, the picture painted here in this example is a worst case scenario (designed to
illustrate how the virtual abstraction layer software works) that should not occur on
reasonably provisioned systems, even when loading is high.

In the real world, use of statically configured constraints such as this are not
recommended. Allowing the virtual abstraction layer to dynamically arbitrate between

Result
Poorly implemented virtual machine
tools to load balance between servers
cause very poor performance on a
system.

contentious systems is the preferred method12. Thus, such a constraint on one virtual
machine would only occur when the sum of the requested loads exceeds 100% of the
overall CPUs. Even if the overall system runs at an average of 75% of capacity, load
balancing limitations would only occur occasionally, and would not likely be long
lasting.

By adding resource management software to the host OS and virtual machines, we can
improve performance of a given loading scenario. Alternatively, we can also increase the
loading of a server while maintaining ���by adding in resource management software.

Performance of Multiple Guest OSs with Heavy Loads
The static constraints imposed by the limited virtual OS tools do a poor job of mimicking
the environment of customers consolidating multiple virtual machines. In the final two
tests, the 50% constraint was removed and, using multiple virtual machines, a requested
load ranging from 80% to 100% of what could be performed by the hardware was used.
Again, we will show results with and without added resource management software.

Dynamic Contention without Resource Management Software
Figure 11, presents the results of ���without resource management software added. In
scenario shown, the overall system CPU climbs from just over 80% to 100% as the user
load of this virtual machine increases.

12 VMware does support some less drastic host-side controls that behave better than the CPU limitation
shown in this paper. Although not presented here, testing shows controls are better than nothing on the
host OS, but because they do not affect other host software processes best results would be achieved by
including a properly configured add-on management package to the host OS.

Result
Adding Resource Management in the
Guest OS alone significantly helps, but
cannot cure, poor performance due to
strict load balancing performed at the
Host OS level.

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User
Load

P3 GuestOS: MicrosoftVS Host w/Priority Management; 4 Guest unmodified

None
Low
Medium
Busy
Maximum
Overload

Figure 11 - ������������under Contention on Unmodified System

As expected, ���shows performance degradation as we reach the limit. From Figure 9 we
know that if we added more loading on additional virtual machines, the performance
drop-off would be more dramatic. Still, worse performance was expected in this test than
the results we obtained.

After a bit of investigation, the conclusion is that this is a natural occurrence of dynamic
contention. Static contention is typically implemented using timer, simply turning the
virtual machine on and off regardless of what it might or might not be doing. Dynamic
contention can take advantage of natural gaps that occur (for example waiting for a file to
be read in) and is better able to balance the system.

Comparing Figure 11 with Figure 2, it can also be seen that the point of significant
performance degradation occurs at a higher overall CPU13 when we are using virtual
machines. This also, is due to this dynamic contention. However, it does not follow that
one can improve the performance of a server by adding in virtualization. It must be

13 Measured CPU, not necessarily “useful work”.

Result
Dynamic Contention is preferred over
Static Contention.

remembered that these tests are not designed to present a fixed “useful workload”, but to
present a known CPU load. The overall “useful work” done by a native system running
at 80% CPU is far less than multiple virtual machines running at a combined rate of 80%
due to overhead.

Dynamic Contention with Resource Management Software
In the final test, results are presented for the case of adding resource management
software to both the host and virtual OS in the dynamic contention scenario.

50
250

450
650

850

1050

1250

1450

1650

1850

None

Busy
0

10

20

30

40

50

60

70

80

90

100

Count

Delay

User
Load

P3 GuestOS: MicrosoftVS Host w/Priority Management; 4 Guest w/Priority Management

None
Low
Medium
Busy
Maximum
Overload

Figure 12 – under Contention with Resource Management Added

Figure 12 shows the ���results of this test. These results are not only very impressive, but
the fully loaded case compares quite well with results of a fully loaded non-virtual system
we have performed in the past.

Result
With proper add-on tools, Virtual
Server performance can nearly rival
that of real server performance.

Additional Alternatives
Virtualization is nothing new, and one should asses other uses of virtualization and other
approaches to computing in the computer industry to aid in understanding this use. This
section provides a sample of various other virtualization forms used in computing. It is
not an exhaustive list.

Virtual Machine Monitor
Research in the 1960s lead IBM Corporation to release the first commercial use of virtual
machines in 1972. VM allowed mainframe customers to run multiple operating system
instances on top of the VMM base. Very popular in the 1970s, this approach fell out of
favor when IBM introduced MVS, which finally allowed for multiple users (isolation),
plus the falling hardware prices that spelled the doom of the mainframe. Much of
today’s operating system virtualization is based upon the same basic concepts, yet little
can be found publicly from the Web. Yet some interesting nuggets can be found. This
paper[6] from 1970 includes a description of how the mammoth 256K bytes of memory
could be broken up into 64 4K pages!. Another interesting paper[7], written by VMware
co-founder Mendel Rosenblum, ties this work in with VMware today.

Emulation
Emulation involves the interpretation of machine instructions on one hardware platform
so as to emulate a different hardware platform. Examples include x86 DOS emulators on
both Apple and Unix boxes popular in the 1980s and 1990s. Another example is how 16-
bit software is emulated on 32-bit processors in the Windows OS via nvtdm today.

Instruction by instruction emulation is slower than virtualization. In today’s
virtualization, hardware is virtualized through device drivers or through API filtering.
The underlying computer hardware architecture and machine instructions remain intact.

“Real Time” OSs
Developers of “embedded” systems, such as most intelligent communications gear of the
1980’s and 1990’s used operating systems termed “real-time” operating systems. Often,
the non-hardware specific portions of these systems were developed and debugged by
hosting the real-time OS within a lightweight thread of a UNIX operating system.

This involved what looks like today’s OS virtualization (without the fancy management
packages) where device drivers where essentially stubbed out or connected to a user
console so that a human could “emulate” the device. While effective for their purposes,
performance was not typically a consideration.

Terminal Server and Citrix
The Microsoft Terminal Server14, especially popular in use with Citrix, provide a form of
virtualization as well. In this case it is the user that is virtualized, or at least the

14 Microsoft Terminal Server is made possible by technology licensed from Citrix. This underpinning
virtualizes users into “sessions”. Citrix also directly sells a popular add-on called Metaframe that enhances
the user experience and provides management capabilities.

input/output devices associated with the user. Also called Thin-Client Computing, this
allows an inexpensive and remote terminal to provide keyboard, mouse, and monitor to
run software on a central server. This solution also carves up the server operating system
into (mostly) independent sessions so that many users may run applications on the server
at the same time. The goal in this environment is to reduce the cost of remote hardware
and software (and maintenance) via centralization.

X
The X-windows system[8] under various UNIX platforms provide a similar, yet different,
method to remote users. Under X, however, an application executes instructions on both
sides of the remote interface. The goal under X was to remove some unnecessary
processing on the central server and push it out to the remote client.

Softricity
Rather than virtualize an entire OS, Softricity SoftGrid[9] virtualizes the application.
Where virtual operating systems do their filtering at the bottom of the (guest) OS,
SoftGrid does the filtering at the interface layer between the application and the OS. This
provides complete application isolation without the overhead of an additional OS.

Where OS virtualization allows the running of different guest operating systems on a
single hardware platform, SoftGrid allows the running of different versions of software
applications to run on the same operating system. In a heterogeneous environment (e.g.
no Linux or Unix) virtualization at the application layer allows substantially more
performance and scalability than virtual operating systems can ever deliver.

XEN
Xen[10] started as a project out of the Systems Research Group of the University of
Cambridge (UK). Xen is an open source OS virtualization solution with the potential for
greater performance than the architectures in use in the products tested as part of this
paper. Those products leave the guest operating system fairly intact, using filters and
virtualized device drivers. This is referred to as para-virtualization as opposed to full-
virtualization. Xen requires access to the source code of the guest OS in order to rewrite
portions. This allows for a more complete and streamlined integration.

Indeed, one of our biggest complaints in OS virtualization is that the guest OS does its
job by putting up artificial barriers. These barriers create the ideal virtual environment so
that applications cannot tell it is not running on real hardware, but also prevent the
sharing of important information and control that is necessary to achieve performance
and scalability. An example of how this limits performance is when a low priority task
running in one virtual machine competes on equal footing with a high priority task in a
different virtual machine. An example limiting scalability would be the inability to pool
“free memory”.

XEN will soon be included in the standard Linux (2.6) distribution. While interesting
from a technology point of view, the requirement of source code changes to the OS
kernel will be quite a limiting factor (support by Microsoft notwithstanding). Given that

the VMware ESX server essentially runs on a Linux base, the true value of Zen may be to
provide VMware a boost in their commercial efforts (especially if Xen 3.0 supports guest
operating systems that cannot be source modified).

GRID Computing
Grid computing is yet another way to get a days work done. Under Grid computing,
multiple computers cooperate to perform work for a variety of users. To be successful,
this requires a massive amount of software to coordinate and manage the activities.
Applications, too, must be (re)written to take advantage of the grid. IBM [14] and
others[11][12][13] are pouring many resources into the Grid initiative. Early success will
come from large scale problems, [15] such as are solved using Super Computers today.
Eventually the benefits can, and should trickle down.

.NET
Microsoft .NET may be many things, and part of it (combined with web technology)
includes the exploitation of the independence of component location and execution.
Since the debut of .NET, this key feature of the architecture has taken a back seat and
may soon be completely forgotten. But maybe not!

Conclusions
Several conclusions can be made from the research and testing performed for the
development of this paper.

Virtual operating systems are a viable solution today to consolidate numerous
underperforming servers. By including additional resource management software on
these virtual machines, both at the host OS level and inside the virtual machines,
consolidated servers can be provisioned with more loading than the current “conventional
wisdom” dictates.

The virtual abstraction layer load balancing algorithms in place today are rudimentary, at
best. Static virtual machine limitations are counter-productive and should be avoided at
all costs.

Performance Monitoring tools running within the guest OS that rely on counters obtained
for the virtual OS are misleading. Examples of this include the Windows Task Manager,
the Performance Monitor, as well as PDH and WMI based tools. Only tools that make
user based measurements (such as we use to create the profiles presented in this paper)
are effective to use within the guest OS.

Ultimately, operating system virtualization creates barriers that shield the host from
knowledge of the level of importance of resource use within a guest or between guests.
This prevents the host from truly applying the kind of optimizations that will best
improve user’s perceptions of system performance. Even the VMware ESX today
ultimately has a Linux based host OS with limited visibility into the guest OS.
Additional advances in the performance of large scale virtual machines should be
obtained with advances in this area.

References

1. CIO Update: Server Consolidation Can Offer a Range of Benefits, Gartner,
March 2004.

2. An Introduction to Server Consolidation Technologies, A Leostream White
Paper;
http://www.leostream.com/pdf/LeostreamServerConsolidationWhitePaper10.pdf

3. Transaction Processing Performance Council; http://www.tpc.org/tpcc/results
4. Perceived Performance, Tuning a System For What Really Matters, Tim Mangan,

TMurgent Technologies;
http://www.tmurgent.com/images/PerceivedPerformace.pdf

5. Perceived Performance, triCerat Inc; Privately Distributed.
6. A Virtual Machine Time-Sharing System, Meyer and Seawright IBM, 1970;

http://www.research.ibm.com/journal/sj/093/ibmsj0903D.pdf
7. Virtual Machine Monitors: The Original Execution Environment, IBM Research;

http://www.research.ibm.com/vee04/Rosenblum.pdf
8. X Windows System, X.Org Foundation; http://www.x.org/
9. Application Virtualization: The Core of SoftGrid, Softricity Inc;

http://www.softricity.com/products/what.asp
10. The Xen Virtual Machine Monitor, University of Cambridge Computer

Laboratory; http://www.cl.cam.ac.uk/Research/SRG/netos/xen/ (This link
provides access to a number of white papers and information regarding Xen).

11. Grid.org; http://www.grid.org/home.htm
12. Global Grid Forum; http://www.ggf.org/
13. IEEE Technical Committee on Scalable Computing, IEEE;

http://www.ieeetcsc.org/
14. What is Grid Computing?, IBM Corporation; http://www-

1.ibm.com/grid/about_grid/what_is.shtml
15. The Anatomy of the Grid, Foster, Kesselman, and Tuecke, The Globus Alliance;

http://www.globus.org/research/papers/anatomy.pdf

